PrevUpHomeNext

Self expanding lattices

odeint supports changes of the state size during integration if a state_type is used which can be resized, like std::vector. The adjustment of the state's size has to be done from outside and the stepper has to be instantiated with always_resizer as the template argument for the resizer_type. In this configuration, the stepper checks for changes in the state size and adjust it's internal storage accordingly.

We show this for a Hamiltonian system of nonlinear, disordered oscillators with nonlinear nearest neighbor coupling.

The system function is implemented in terms of a class that also provides functions for calculating the energy. Note, that this class stores the random potential internally which is not resized, but rather a start index is kept which should be changed whenever the states' size change.

typedef vector< double > coord_type;
typedef pair< coord_type , coord_type > state_type;

struct compacton_lattice
{
    const int m_max_N;
    const double m_beta;
    int m_pot_start_index;
    vector< double > m_pot;

    compacton_lattice( int max_N , double beta , int pot_start_index )
        : m_max_N( max_N ) , m_beta( beta ) , m_pot_start_index( pot_start_index ) , m_pot( max_N )
    {
        srand( time( NULL ) );
        // fill random potential with iid values from [0,1]
        boost::mt19937 rng;
        boost::uniform_real<> unif( 0.0 , 1.0 );
        boost::variate_generator< boost::mt19937&, boost::uniform_real<> > gen( rng , unif );
        generate( m_pot.begin() , m_pot.end() , gen );
    }

    void operator()( const coord_type &q , coord_type &dpdt )
    {
        // calculate dpdt = -dH/dq of this hamiltonian system
        // dp_i/dt = - V_i * q_i^3 - beta*(q_i - q_{i-1})^3 + beta*(q_{i+1} - q_i)^3
        const int N = q.size();
        double diff = q[0] - q[N-1];
        for( int i=0 ; i<N ; ++i )
        {
            dpdt[i] = - m_pot[m_pot_start_index+i] * q[i]*q[i]*q[i] -
                    m_beta * diff*diff*diff;
            diff = q[(i+1) % N] - q[i];
            dpdt[i] += m_beta * diff*diff*diff;
        }
    }

    void energy_distribution( const coord_type &q , const coord_type &p , coord_type &energies )
    {
        // computes the energy per lattice site normalized by total energy
        const size_t N = q.size();
        double en = 0.0;
        for( size_t i=0 ; i<N ; i++ )
        {
            const double diff = q[(i+1) % N] - q[i];
            energies[i] = p[i]*p[i]/2.0
                + m_pot[m_pot_start_index+i]*q[i]*q[i]*q[i]*q[i]/4.0
                + m_beta/4.0 * diff*diff*diff*diff;
            en += energies[i];
        }
        en = 1.0/en;
        for( size_t i=0 ; i<N ; i++ )
        {
            energies[i] *= en;
        }
    }

    double energy( const coord_type &q , const coord_type &p )
    {
        // calculates the total energy of the excitation
        const size_t N = q.size();
        double en = 0.0;
        for( size_t i=0 ; i<N ; i++ )
        {
            const double diff = q[(i+1) % N] - q[i];
            en += p[i]*p[i]/2.0
                + m_pot[m_pot_start_index+i]*q[i]*q[i]*q[i]*q[i] / 4.0
                + m_beta/4.0 * diff*diff*diff*diff;
        }
        return en;
    }

    void change_pot_start( const int delta )
    {
        m_pot_start_index += delta;
    }
};

The total size we allow is 1024 and we start with an initial state size of 60.

//start with 60 sites
const int N_start = 60;
coord_type q( N_start , 0.0 );
q.reserve( max_N );
coord_type p( N_start , 0.0 );
p.reserve( max_N );
// start with uniform momentum distribution over 20 sites
fill( p.begin()+20 , p.end()-20 , 1.0/sqrt(20.0) );

coord_type distr( N_start , 0.0 );
distr.reserve( max_N );

// create the system
compacton_lattice lattice( max_N , beta , (max_N-N_start)/2 );

//create the stepper, note that we use an always_resizer because state size might change during steps
typedef symplectic_rkn_sb3a_mclachlan< coord_type , coord_type , double , coord_type , coord_type , double ,
        range_algebra , default_operations , always_resizer > hamiltonian_stepper;
hamiltonian_stepper stepper;
hamiltonian_stepper::state_type state = make_pair( q , p );

The lattice gets resized whenever the energy distribution comes close to the borders distr[10] > 1E-150, distr[distr.size()-10] > 1E-150. If we increase to the left, q and p have to be rotated because their resize function always appends at the end. Additionally, the start index of the potential changes in this case.

double t = 0.0;
const double dt = 0.1;
const int steps = 10000;
for( int step = 0 ; step < steps ; ++step )
{
    stepper.do_step( boost::ref(lattice) , state , t , dt );
    lattice.energy_distribution( state.first , state.second , distr );
    if( distr[10] > 1E-150 )
    {
        do_resize( state.first , state.second , distr , state.first.size()+20 );
        rotate( state.first.begin() , state.first.end()-20 , state.first.end() );
        rotate( state.second.begin() , state.second.end()-20 , state.second.end() );
        lattice.change_pot_start( -20 );
        cout << t << ": resized left to " << distr.size() << ", energy = " << lattice.energy( state.first , state.second ) << endl;
    }
    if( distr[distr.size()-10] > 1E-150 )
    {
        do_resize( state.first , state.second , distr , state.first.size()+20 );
        cout << t << ": resized right to " << distr.size() << ", energy = " << lattice.energy( state.first , state.second ) << endl;
    }
    t += dt;
}

The do_resize function simply calls vector.resize of q , p and distr.

void do_resize( coord_type &q , coord_type &p , coord_type &distr , const int N )
{
    q.resize( N );
    p.resize( N );
    distr.resize( N );
}

The full example can be found in resizing_lattice.cpp


PrevUpHomeNext